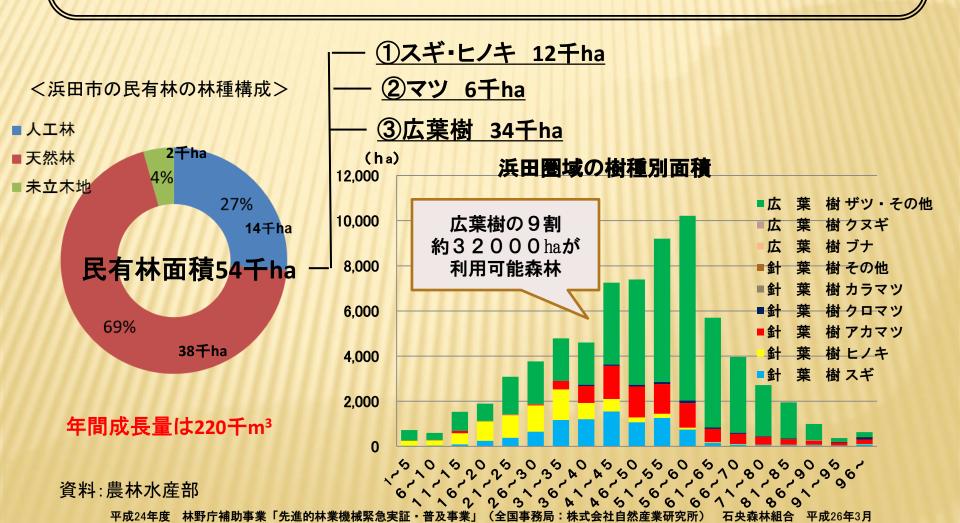
クローラ式タワーヤーダと 牽引式チッパーの導入による 全木集材・利用システムの開発



石央森林組合(島根県)

浜田市の森林の概況

- 〇浜田市の森林率は81%で、民有林が97%、国有林が3%を占める。
- 〇スギ・ヒノキなどの人工林率は26%(全国平均46%、県平均38%)
- 〇利用可能な樹木は、スギは40年生以上、ヒノキは45年生以上。 スギ・ヒノキ人工林のうち、利用可能に達した森林面積(蓄積)の割合は35%(52%)。 広葉樹の9割が利用可能森林。

地域に適合した作業システムの構築

- ◆ モデル団地の地形と傾斜を踏まえた架線系と車両系を組 み合わせた作業システムの構築
 - 林業専用道等の骨格路線を尾根部に整備 【緩~中傾斜地】
 - ・森林作業道を支線として整備し、ハーベスタ、 フォワーダの能力が発揮できるシステムを構築

【中~急傾斜地】

- ・タワーヤーダによる全木集材のシステムの実証 ⇒低質材のバイオマス利用促進
- ◆ 生産・販売・労務管理部門への I T活用
- ◆ 森林再生に向けた低コスト造林の検討

| H | ・タワーヤーダNR301

導入・改良した機械(タワーヤーダ)

型式:NR301 (IHI建機株式会社)

◆ 特徴

- 横引き集材が容易
- ・強力な牽引力
- 無線による自動搬送機能
- 既設作業道の利用が可能 (W: 2.2m)

◆ 改良点

- 下荷集材での安全性確保 搬器内の巻き取りの溝を改良し、滑らないよう改良した
- ・無線による安全性確保と省力化 無線での操作とオートチョーカーを追加、2人での作業を可能にした
- 安全装置(ホーンが鳴る負荷の調整機能付加)の改良

導入・改良した機械 (移動式チッパー、フォワーダ)

【チッパー】TP250 MOBILE TURNTABLE (Lindana社)

- ◆ 特徴
 - 切削式 (直径25cmまで)
 - 動力を搭載、牽引式
 - チップ径: 13mm
 - 生產性: 10~20m³/h
 - 既設作業道の利用可能 (W:2m)

【フォワーダ】F801(IHI建機株式会社)

- ◆ 改良点
 - 荷台を改良コンテナ(6m³)の積載を可能にした

平成24年度 林野庁補助事業「先進的林業機械緊急実証・普及事業」(全国事務局:株式会社自然産業研究所) 石央森林組合 平成26年3

作業システム開発計画と期待される効果

機械の導入・改良により期待される効果

◆ 架設撤去の省力化

200m以下

◆ 林地残材の効率的集材とチップの効率的搬出

新しい作業システムの評価結果

×調査結果

機種	タワーヤーダ	チッパー	
調査日	2014 年 2月4日~7日	2月4日	2月5日
樹種	広葉樹雑木主体,一部ス ギ,枯損マツ	広葉樹雑木	ヒノキ(一部ス ギ)
材料種類	全木材	枝葉,梢端,小径木混 合	枝,梢端,小径木混 合,全木(3本)
総観測時間	11時間59分8秒	約1時間	約4時間
生産重量		2.07生トン	5.72生トン
		1.47トン	4.6トン
生産体積	51.8m ³	4.5 m^3	12 m ³
生産性		1.84トン/h	1.69トン/h
	8.64m ³ / 人日	$5.63 \text{ m}^3/\text{h}$	$4.36 \text{ m}^3/\text{h}$
燃料消費量		4.99 L/h	4.97 L/h

平成24年度 林野庁補助事業「先進的林業機械緊急実証・普及事業」(全国事務局:株式会社自然産業研究所) 石央森林組合 平成26年3月

新しい作業システムの評価結果

*課題① 集材工程の生産性の向上

従来型集材作業 (スイングヤーダ、集材機) 3~4m³/人日

新集材作業 (タワーヤーダ) 8.64m³/人日

平成24年度 林野庁補助事業「先進的林業機械緊急実証・普及事業」(全国事務局:株式会社自然産業研究所) 石央森林組合 平成26年3

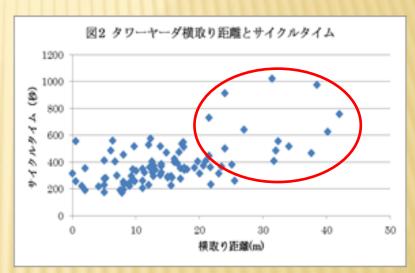
新しい作業システムの評価結果

×課題② 現場チッピングの効果検証

搬入量 約40m³ (トラック荷台容量) チッピング

生產量 約12m³

減容化



平成24年度 林野庁補助事業「先進的林業機械緊急実証・普及事業」(全国事務局:株式会社自然産業研究所) 石央森林組合 平成26年3月

新しい作業システムの活用に向けた考察

- × タワーヤーダの作業条件等
 - ①横取り距離は20m以下が適している

集材距離20m以上: 要する時間 増 地表等への接触回数 増

1架線での集材幅40mに設定

- ※地形により結果は異なる可能性有り
- ②グラップル (鋸断・整理) の工程を上回る場合がある

造材方法等の改良

新しい作業システムの活用に向けた考察

- × チッパーの作業条件等 O最大対応径について
 - カタログスペックでは25cm

24,5cmであるが投入不能

枝張りが大ぶりで投入不能

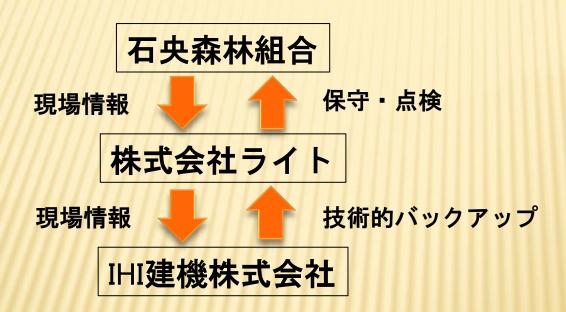
直径20cm程度の材が適している

オペレータ訓練

◆ オペレータ所感等

- ホールバックラインが破断する前に安全装置が作動してほしい。
- 無線機を改良してほしい。(表示画面導入、稼働時のランプ表示、ボタン位置の修正)
- 搬器のホイストライン巻き上げ時に不具合がでた。
- 先柱のスナッチの頭部分が稼働すればよい。
- 操作確認音と警告音が同一なのでわかりづらい。

【チッパー】


- 台などがあると機械投入しやすい。
- 径が25cm近くなると長物が発生する。
- シューターの勢いが強くチップが少しはみ出す。

技術的サポート体制の構築

×技術的サポート体制

×体制構築のポイント

- 新しい機械であるため、現場作業での安全を最優先にした保守点検
- 現場での情報をメーカまで伝え、技術・品質の向上につなげる

今後の取り組み課題

× 導入した機械の更なる改良ポイント

【タワーヤーダ】

- ・機械操作に習熟し確実に2名(1.5名)で集材を実施
- ・より長距離(200m程度)での集材試験の実施

【チッパー】

- 幹ごと材を投入し、断続的なチッピングを実施
- ・機械改良も視野に入れた、最適な投入方法の検証

今後の取り組み課題

×システム全体の工程調査

- ・改良フォワーダとの連携
- ボトルネックとなる工程の改善
- 既存の車両系システムとの比較
- ・木質バイオマス最適集荷圏域の推定

* 木質バイオマスチップ供給体制整備

- 集約化、森林経営計画策定
- 人材育成
- 路網整備
- 機械 施設整備

今後の取り組み課題

→今後の目標

項目	現況 (H 2 2)	目標 (H26)	10 年後(H32)
素材生産量 (針葉樹·広葉樹)	10,500㎡/年	→20,500㎡/年	→30,000㎡/年
労働生産性	間伐:3㎡/人日 主伐:5㎡/人 日	→10㎡/人日 →12㎡/人日	→15㎡/人日 →20㎡/人日
木質バイオマスチップ 供給量	Ot	→ 10,000t (※H27.4供給開始)	→10,000t

基盤整備(機械化や林業専用道など)に対する支援を活用し、10年後の林業ビジネスモデル確立を目指す。

平成24年度 林野庁補助事業「先進的林業機械緊急実証・普及事業」(全国事務局:株式会社自然産業研究所) 石央森林組合 平成26年3月